Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(5): 2452-2463, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188540

RESUMO

Accelerated evolution of any portion of the genome is of significant interest, potentially signaling positive selection of phenotypic traits and adaptation. Accelerated evolution remains understudied for structured RNAs, despite the fact that an RNA's structure is often key to its function. RNA structures are typically characterized by compensatory (structure-preserving) basepair changes that are unexpected given the underlying sequence variation, i.e., they have evolved through negative selection on structure. We address the question of how fast the primary sequence of an RNA can change through evolution while conserving its structure. Specifically, we consider predicted and known structures in vertebrate genomes. After careful control of false discovery rates, we obtain 13 de novo structures (and three known Rfam structures) that we predict to have rapidly evolving sequences-defined as structures where the primary sequences of human and mouse have diverged at least twice as fast (1.5 times for Rfam) as nearby neutrally evolving sequences. Two of the three known structures function in translation inhibition related to infection and immune response. We conclude that rapid sequence divergence does not preclude RNA structure conservation in vertebrates, although these events are relatively rare.


Assuntos
Genoma , RNA , Animais , Evolução Molecular , Camundongos , Filogenia , RNA/química , RNA/genética , Vertebrados/genética
2.
Front Mol Biosci ; 9: 1081176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685283

RESUMO

Background: Ulcerative colitis (UC) is a disorder with unknown etiology, and animal models play an essential role in studying its molecular pathophysiology. Here, we aim to identify common conserved pathological UC-related gene expression signatures between humans and mice that can be used as treatment targets and/or biomarker candidates. Methods: To identify differentially regulated protein-coding genes and non-coding RNAs, we sequenced total RNA from the colon and blood of the most widely used dextran sodium sulfate Ulcerative colitis mouse. By combining this with public human Ulcerative colitis data, we investigated conserved gene expression signatures and pathways/biological processes through which these genes may contribute to disease development/progression. Results: Cross-species integration of human and mouse Ulcerative colitis data resulted in the identification of 1442 genes that were significantly differentially regulated in the same direction in the colon and 157 in blood. Of these, 51 genes showed consistent differential regulation in the colon and blood. Less known genes with importance in disease pathogenesis, including SPI1, FPR2, TYROBP, CKAP4, MCEMP1, ADGRG3, SLC11A1, and SELPLG, were identified through network centrality ranking and validated in independent human and mouse cohorts. Conclusion: The identified Ulcerative colitis conserved transcriptional signatures aid in the disease phenotyping and future treatment decisions, drug discovery, and clinical trial design.

3.
Mol Vis ; 25: 1-11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820140

RESUMO

Purpose: To identify the mutation for Volkmann cataract (CTRCT8) at 1p36.33. Methods: The genes in the candidate region 1p36.33 were Sanger and parallel deep sequenced, and informative single nucleotide polymorphisms (SNPs) were identified for linkage analysis. Expression analysis with reverse transcription polymerase chain reaction (RT-PCR) of the candidate gene was performed using RNA from different human tissues. Quantitative transcription polymerase chain reaction (qRT-PCR) analysis of the GNB1 gene was performed in affected and healthy individuals. Bioinformatic analysis of the linkage regions including the candidate gene was performed. Results: Linkage analysis of the 1p36.33 CCV locus applying new marker systems obtained with Sanger and deep sequencing reduced the candidate locus from 2.1 Mb to 0.389 Mb flanked by the markers STS-22AC and rs549772338 and resulted in an logarithm of the odds (LOD) score of Z = 21.67. The identified mutation, rs763295804, affects the donor splice site in the long non-coding RNA gene RP1-140A9.1 (ENSG00000231050). The gene including splice-site junctions is conserved in primates but not in other mammalian genomes, and two alternative transcripts were shown with RT-PCR. One of these transcripts represented a lens cell-specific transcript. Meta-analysis of the Cross-Linking-Immuno-Precipitation sequencing (CLIP-Seq) data suggested the RNA binding protein (RBP) eIF4AIII is an active counterpart for RP1-140A9.1, and several miRNA and transcription factors binding sites were predicted in the proximity of the mutation. ENCODE DNase I hypersensitivity and histone methylation and acetylation data suggest the genomic region may have regulatory functions. Conclusions: The mutation in RP1-140A9.1 suggests the long non-coding RNA as the candidate cataract gene associated with the autosomal dominant inherited congenital cataract from CCV. The mutation has the potential to destroy exon/intron splicing of both transcripts of RP1-140A9.1. Sanger and massive deep resequencing of the linkage region failed to identify alternative candidates suggesting the mutation in RP1-140A9.1 is causative for the CCV phenotype.


Assuntos
Catarata/congênito , Cromossomos Humanos Par 1/química , Mutação , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Acetilação , Adulto , Sequência de Bases , Sítios de Ligação , Catarata/diagnóstico , Catarata/genética , Catarata/patologia , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Éxons , Família , Feminino , Genes Dominantes , Loci Gênicos , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/genética , Histonas/metabolismo , Humanos , Íntrons , Masculino , Metilação , Pessoa de Meia-Idade , Linhagem , Sítios de Splice de RNA , Splicing de RNA , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo
4.
Genome Res ; 27(8): 1371-1383, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28487280

RESUMO

Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization, and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for conserved RNA structures (CRSs), leveraging structure-based, rather than sequence-based, alignments. After careful correction for sequence identity and GC content, we predict ∼516,000 human genomic regions containing CRSs. We find that a substantial fraction of human-mouse CRS regions (1) colocalize consistently with binding sites of the same RNA binding proteins (RBPs) or (2) are transcribed in corresponding tissues. Additionally, a CaptureSeq experiment revealed expression of many of our CRS regions in human fetal brain, including 662 novel ones. For selected human and mouse candidate pairs, qRT-PCR and in vitro RNA structure probing supported both shared expression and shared structure despite low abundance and low sequence identity. About 30,000 CRS regions are located near coding or long noncoding RNA genes or within enhancers. Structured (CRS overlapping) enhancer RNAs and extended 3' ends have significantly increased expression levels over their nonstructured counterparts. Our findings of transcribed uncharacterized regulatory regions that contain CRSs support their RNA-mediated functionality.


Assuntos
Regulação da Expressão Gênica , Conformação de Ácido Nucleico , RNA/química , RNA/genética , Elementos Reguladores de Transcrição , Vertebrados/genética , Animais , Sequência de Bases , Sequência Conservada , Genoma Humano , Humanos , Camundongos , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência , Transcrição Gênica
5.
Inflamm Bowel Dis ; 22(9): 2078-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27542128

RESUMO

BACKGROUND: Beneficial roles for glucagon-like peptide 1 (GLP-1)/GLP-1R signaling have recently been described in diseases, where low-grade inflammation is a common phenomenon. We investigated the effects of GLP-1 in Brunner's glands and duodenum with abundant expression of GLP-1 receptors, as well as GLP-1 effect on colonic inflammation. METHODS: RNA from Brunner's glands of GLP-1R knockout and wild-type mice were subjected to full transcriptome profiling. Array results were validated by quantitative reverse transcription polymerase chain reaction in wild-type mice and compared with samples from inflammatory bowel disease (IBD) patients and controls. In addition, we performed a detailed investigation of the effects of exogenous liraglutide dosing in a T-cell driven adoptive transfer (AdTr) colitis mouse model. RESULTS: Analyses of the Brunner's gland transcriptomes of GLP-1R knockout and wild-type mice identified 722 differentially expressed genes. Upregulated transcripts after GLP-1 dosing included IL-33, chemokine ligand 20 (CCL20), and mucin 5b. Biopsies from IBD patients and controls, as well as data from the AdTr model, showed deregulated expression of GLP-1R, CCL20, and IL-33 in colon. Circulating levels of GLP-1 were found to be increased in mice with colitis. Finally, the colonic cytokine levels and disease scores of the AdTr model indicated reduced levels of colonic inflammation in liraglutide-dosed animals. CONCLUSIONS: We demonstrate that IL-33, GLP-1R, and CCL20 are deregulated in human IBD, and that prophylactic treatment with 0.6 mg/kg liraglutide improves disease in AdTr colitis. In addition, GLP-1 receptor agonists upregulate IL-33, mucin 5b, and CCL20 in murine Brunner's glands. Taken together, our data indicate that GLP-1 receptor agonists affect gut homeostasis in both proximal and distal parts of the gut.


Assuntos
Glândulas Duodenais/metabolismo , Colite/patologia , Colo/metabolismo , Doenças Inflamatórias Intestinais/patologia , Liraglutida/farmacologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Quimiocina CCL20/metabolismo , Colite/tratamento farmacológico , Feminino , Expressão Gênica , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Humanos , Inflamação/patologia , Interleucina-33/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Mucina-5B/metabolismo , RNA Mensageiro/análise , Adulto Jovem
6.
Diabetes Metab Res Rev ; 32(4): 334-49, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26418758

RESUMO

In the last decade, there has been an explosion in both the number of and knowledge about miRNAs associated with both type 1 and type 2 diabetes. Even though we are presently in the initial stages of understanding how this novel class of posttranscriptional regulators are involved in diabetes, recent studies have demonstrated that miRNAs are important regulators of the islet transcriptome, controlling apoptosis, differentiation and proliferation, as well as regulating unique islet and beta-cell functions and pathways such as insulin expression, processing and secretion. Furthermore, a large number of miRNAs have been linked to diabetogenic processes induced by elevated levels of glucose, free fatty acids and inflammatory cytokines. Thus, miRNAs are novel therapeutic targets with the potential of protecting the beta-cell, and there is proof of principle that miRNA antagonists, so-called antagomirs, are effective in vivo for other disorders. miRNAs are exported out of cells in exosomes, raising the intriguing possibility of cell-to-cell communication between distant tissues via miRNAs and that miRNAs can be used as biomarkers of beta-cell function, mass and survival. The purpose of this review is to provide a status on how miRNAs control beta-cell function and viability in health and disease.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Regulação da Expressão Gênica , Células Secretoras de Insulina/patologia , MicroRNAs/fisiologia , Animais , Biomarcadores , Humanos
7.
Genomics ; 103(4): 264-75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24462878

RESUMO

Type 1 Diabetes (T1D) is an autoimmune disease where local release of cytokines such as IL-1ß and IFN-γ contributes to ß-cell apoptosis. To identify relevant genes regulating this process we performed a meta-analysis of 8 datasets of ß-cell gene expression after exposure to IL-1ß and IFN-γ. Two of these datasets are novel and contain time-series expressions in human islet cells and rat INS-1E cells. Genes were ranked according to their differential expression within and after 24 h from exposure, and characterized by function and prior knowledge in the literature. A regulatory network was then inferred from the human time expression datasets, using a time-series extension of a network inference method. The two most differentially expressed genes previously unknown in T1D literature (RIPK2 and ELF3) were found to modulate cytokine-induced apoptosis. The inferred regulatory network is thus supported by the experimental validation, providing a proof-of-concept for the proposed statistical inference approach.


Assuntos
Citocinas/metabolismo , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Células Secretoras de Insulina/fisiologia , Animais , Citocinas/farmacologia , Proteínas de Ligação a DNA/genética , Diabetes Mellitus Tipo 1 , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Interferon gama/metabolismo , Interferon gama/farmacologia , Ilhotas Pancreáticas/fisiologia , Proteínas Proto-Oncogênicas c-ets/genética , Ratos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/genética
8.
Exp Diabetes Res ; 2012: 896362, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829805

RESUMO

This study aims to identify key miRNAs in circulation, which predict ongoing beta-cell destruction and regeneration in children with newly diagnosed Type 1 Diabetes (T1D). We compared expression level of sera miRNAs from new onset T1D children and age-matched healthy controls and related the miRNAs expression levels to beta-cell function and glycaemic control. Global miRNA sequencing analyses were performed on sera pools from two T1D cohorts (n = 275 and 129, resp.) and one control group (n = 151). We identified twelve upregulated human miRNAs in T1D patients (miR-152, miR-30a-5p, miR-181a, miR-24, miR-148a, miR-210, miR-27a, miR-29a, miR-26a, miR-27b, miR-25, miR-200a); several of these miRNAs were linked to apoptosis and beta-cell networks. Furthermore, we identified miR-25 as negatively associated with residual beta-cell function (est.: -0.12, P = 0.0037), and positively associated with glycaemic control (HbA1c) (est.: 0.11, P = 0.0035) 3 months after onset [corrected]. In conclusion this study demonstrates that miR-25 might be a "tissue-specific" miRNA for glycaemic control 3 months after diagnosis in new onset T1D children and therefore supports the role of circulating miRNAs as predictive biomarkers for tissue physiopathology and potential intervention targets.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Células Secretoras de Insulina/citologia , MicroRNAs/metabolismo , Adolescente , Biomarcadores/metabolismo , Glicemia/metabolismo , Estudos de Casos e Controles , Criança , Estudos de Coortes , Dinamarca , Diabetes Mellitus Tipo 1/metabolismo , Progressão da Doença , Feminino , Humanos , Hiperglicemia/metabolismo , Masculino , Indução de Remissão , Análise de Sequência de DNA , Regulação para Cima
9.
BMC Genomics ; 12: 97, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21294859

RESUMO

BACKGROUND: Several approaches have been developed for miRNA target prediction, including methods that incorporate expression profiling. However the methods are still in need of improvements due to a high false discovery rate. So far, none of the methods have used independent component analysis (ICA). Here, we developed a novel target prediction method based on ICA that incorporates both seed matching and expression profiling of miRNA and mRNA expressions. The method was applied on a cellular model of type 1 diabetes. RESULTS: Microarray profiling identified eight miRNAs (miR-124/128/192/194/204/375/672/708) with differential expression. Applying ICA on the mRNA profiling data revealed five significant independent components (ICs) correlating to the experimental conditions. The five ICs also captured the miRNA expressions by explaining > 97% of their variance. By using ICA, seven of the eight miRNAs showed significant enrichment of sequence predicted targets, compared to only four miRNAs when using simple negative correlation. The ICs were enriched for miRNA targets that function in diabetes-relevant pathways e.g. type 1 and type 2 diabetes and maturity onset diabetes of the young (MODY). CONCLUSIONS: In this study, ICA was applied as an attempt to separate the various factors that influence the mRNA expression in order to identify miRNA targets. The results suggest that ICA is better at identifying miRNA targets than negative correlation. Additionally, combining ICA and pathway analysis constitutes a means for prioritizing between the predicted miRNA targets. Applying the method on a model of type 1 diabetes resulted in identification of eight miRNAs that appear to affect pathways of relevance to disease mechanisms in diabetes.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , MicroRNAs/genética , Western Blotting , Linhagem Celular , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
PLoS One ; 5(5): e10843, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20520763

RESUMO

BACKGROUND: Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB) is required for stabilization of insulin mRNA and the PTB mRNA 3'-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146. The aim of this study was therefore to investigate whether high glucose increased the levels of these three miRNAs in association with lower PTB levels and lower insulin biosynthesis rates. METHODOLOGY/PRINCIPAL FINDINGS: Human islets were cultured for 24 hours in the presence of low (5.6 mM) or high glucose (20 mM). Islets were also exposed to sodium palmitate or the proinflammatory cytokines IL-1beta and IFN-gamma, since saturated free fatty acids and cytokines also cause islet dysfunction. RNA was then isolated for real-time RT-PCR analysis of miR-133a, miR-124a, miR-146, insulin mRNA and PTB mRNA contents. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. Synthetic miR-133a precursor and inhibitor were delivered to dispersed islet cells by lipofection, and PTB was analyzed by immunoblotting following culture at low or high glucose. Culture in high glucose resulted in increased islet contents of miR-133a and reduced contents of miR-146. Cytokines increased the contents of miR-146. The insulin and PTB mRNA contents were unaffected by high glucose. However, both PTB protein levels and insulin biosynthesis rates were decreased in response to high glucose. The miR-133a inhibitor prevented the high glucose-induced decrease in PTB and insulin biosynthesis, and the miR-133a precursor decreased PTB levels and insulin biosynthesis similarly to high glucose. CONCLUSION: Prolonged high-glucose exposure down-regulates PTB levels and insulin biosynthesis rates in human islets by increasing miR-133a levels. We propose that this mechanism contributes to hyperglycemia-induced beta-cell dysfunction.


Assuntos
Glucose/farmacologia , Insulina/biossíntese , Ilhotas Pancreáticas/metabolismo , MicroRNAs/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Citocinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Insulina/genética , Ilhotas Pancreáticas/efeitos dos fármacos , MicroRNAs/genética , Ácido Palmítico/farmacologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...